Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Entropy (Basel) ; 23(9)2021 Sep 04.
Article in English | MEDLINE | ID: covidwho-1390565

ABSTRACT

Access to healthcare data such as electronic health records (EHR) is often restricted by laws established to protect patient privacy. These restrictions hinder the reproducibility of existing results based on private healthcare data and also limit new research. Synthetically-generated healthcare data solve this problem by preserving privacy and enabling researchers and policymakers to drive decisions and methods based on realistic data. Healthcare data can include information about multiple in- and out- patient visits of patients, making it a time-series dataset which is often influenced by protected attributes like age, gender, race etc. The COVID-19 pandemic has exacerbated health inequities, with certain subgroups experiencing poorer outcomes and less access to healthcare. To combat these inequities, synthetic data must "fairly" represent diverse minority subgroups such that the conclusions drawn on synthetic data are correct and the results can be generalized to real data. In this article, we develop two fairness metrics for synthetic data, and analyze all subgroups defined by protected attributes to analyze the bias in three published synthetic research datasets. These covariate-level disparity metrics revealed that synthetic data may not be representative at the univariate and multivariate subgroup-levels and thus, fairness should be addressed when developing data generation methods. We discuss the need for measuring fairness in synthetic healthcare data to enable the development of robust machine learning models to create more equitable synthetic healthcare datasets.

2.
J Transp Geogr ; 89: 102894, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-894084

ABSTRACT

In response to the COVID-19 pandemic, a growing number of states, counties and cities in the United States issued mandatory stay-at-home orders as part of their efforts to slow down the spread of the virus. We argue that the consequences of this one-size-fits-all order will be differentially distributed among economic groups. In this paper, we examine social distance behavior changes for lower income populations. We conduct a comparative analysis of responses between lower-income and upper-income groups and assess their relative exposure to COVID-19 risks. Using a difference-in-difference-in-differences analysis of 3140 counties, we find social distance policy effect on the lower-income group is smaller than that of the upper-income group, by as much as 46% to 54%. Our explorations of the mechanisms behind the disparate effects suggest that for the work-related trips the stay-at-home orders do not significantly reduce low income work trips and this result is statistically significant. That is, the share of essential business defined by stay-at-home orders is significantly negatively correlated with income at county level. In the non-work-related trips, we find that both the lower-income and upper-income groups reduced visits to retail, recreation, grocery, and pharmacy visits after the stay-at-home order, with the upper-income group reducing trips more compared to lower-income group.

SELECTION OF CITATIONS
SEARCH DETAIL